



Abstract—We describe the conclusions of a technology and

communities survey supported by concurrent and follow-on

proof-of-concept prototyping to evaluate feasibility of defining a

durable, versatile, reliable, visible software interface to support

strategic modularization of test software development. The

objective is that test sets and support software with diverse

origins, ages, and abilities can be reliably integrated into test

configurations that assemble and tear down and reassemble with

scalable complexity in order to conduct both parametric tests and

monitored trial runs. The resulting approach is based on

integration of three recognized technologies that are currently

gaining acceptance within the test industry and when combined

provide a simple, open and scalable test orchestration

architecture that addresses the objectives of the Automation

Hooks task. The technologies are automated discovery using

multicast DNS Zero Configuration Networking (zeroconf),

commanding and data retrieval using resource-oriented Restful

Web Services, and XML data transfer formats based on

Automatic Test Markup Language (ATML). This open-source

standards-based approach provides direct integration with

existing commercial off-the-shelf (COTS) analysis software tools.

Index Terms— Software standards, Test equipment, Test

facilities, Testing, Software management, Software reusability

I. INTRODUCTION

ASA’s Constellation Program identified an opportunity

to reduce out-year operating costs for system and sub-

system integration test operations through automation-assisted

test choreography and data orchestration. There are

complimentary opportunities to improve scientific research

and engineering development workflows.

 Essentially, the opportunity is that even for run-once and

investigative testing, COTS and even custom hardware is

configured and monitored by users through keyboard-and-

mouse software packages. If data from these heterogeneous

modules could be harvested through a robust, open standard

based infrastructure, the data products could be formed more

quickly, accurately, and thoroughly, and results correlated

Manuscript received June 1, 2010. This work was performed in NASA

Johnson Space Center’s Avionics Systems Division in support of the

Constellation Program.

C. A. Lansdowne is with the National Aeronautics and Space
Administration, Houston, TX 77058 USA (phone: 281-483-1265; fax: 281-

483-6297; e-mail: chatwin.lansdowne@ nasa.gov).

J. R. Maclean is with METECS, Houston, TX 77058 USA (phone 281-
483-3265; e-mail: john.r.maclean@nasa.gov).

more powerfully—by comparison with, say, having users type

data from screens into spreadsheets or collect and transfer data

files in an ad-hoc fashion.

 The application scenarios anticipated are not high volume

or highly repetitive. Automating development of the test

procedures themselves from requirements is not a significant

area of interest. Much of the potential for saving is related to

discovery of module data requirements and aggregation of test

data in integrated scenarios containing a changing assortment

of highly complex and coupled modules.

There are many technical challenges to address, but first

one must confront the organizational challenge in that the

software modules available at a system integration test, for

example, are of diverse origins and developed on

heterogeneous platforms.

 Having accomplished the aggregation of coincident

observations, one can further imagine storing and restoring the

configuration of the test bed using read/write interfaces, and

ultimately it could be possible to repeat test sequences and

overlay data.

 Quiescent, continuous, and event-driven test cycles are

anticipated. Scripted flows are presumed built on less

structured fault-isolation or experimentation test flows.

The concept of operations imposes some constraints

required to enable data correlation. These include time

synchronization mechanisms and resources, data indexing,

labeling data with metadata, and encouraging the use of

widely understood self-describing data formats.

II. CRITERIA AND FIELD OF CHOICES

A concept of operations was proposed, and then distilled

down to a set of “guiding principles” which could be used for

evaluating different approaches. These principles included:

Non-proprietary, with multiple vendors. A proprietary or

single-vendor interface could not achieve universal

penetration into varied developments and could present a

single-point-of-failure risk to the Program.

Widespread usage, with active user communities. Our

intention was not to reinvent the interface and associated

toolsets, but rather to find and adopt (adapt) already widely

supported technologies.

Supported in the Test industry. Interfaces with existing

support in NASA, DoD, and consumer communities and test

COTS products were given affirmative weight.

Multiple sources of ready development tools. Software

Automation Hooks Architecture Trade Study for

Flexible Test Orchestration

Chatwin A. Lansdowne, John R. Maclean, Members, IEEE

Frank J. Graffagnino, Patrick A. McCartney

N

978-1-4244-7961-0/10/$26.00 ©2010 IEEE

interfaces supported by a family of open source tools provide

rapid deployment.

Language and OS independent. Interfaces that are tied to

specific operating systems or development environments only

solve part of the problem, and are vulnerable to accelerated

obsolescence.

Having described what we were seeking, we surveyed test

communities at NASA, DoD, and in industry, and also

considered plug-and-play consumer interfaces. We considered

that our software elements could use simulation interfaces, or

instrumentation interfaces, or web services interfaces.

Fundamentally the difference between requirements for a test

software interface and a simulation software interface is that

the modules do not need to interact.

III. SUMMARY OF STUDY OBSERVATIONS

A. Existing End-to-End Infrastructures

Several existing end-to-end simulation and test infrastructures

were investigated in an attempt to find an out-of-the box

capability that could be used to meet the trade study criteria.

High Level Architecture (HLA) has been used in the

Constellation program as an architecture for distributed

dynamics simulations. It was examined briefly but it was

quickly decided that the overhead associated with its run time

infrastructure and simulation federate organization made it

unattractive as a test orchestration infrastructure.

The Test and Training Enabling Architecture (TENA) is a

DoD initiative aimed at distributed simulation and test

applications. It is geared to supporting test ranges and

facilities. TENA seemed to require middleware that appeared

to be single-source. In addition, it is based on CORBA, an

object-based messaging protocol that has been declining in

popularity because of its complexity and historical difficulty

penetrating firewalls. Interest in the wider community has

shifted from CORBA and its competitor DCOM to Web

Services which are discussed later.

B. Established Test Software Interfaces

A promising early candidate was the LXI interface, and

ultimately we adopted several features of this interface. The

interface was discarded because tools for development of LXI

hosts were not readily available.

Investigation of the DoD Automatic Test Systems (ATS)

Open Systems approach lead to interest in the Automatic Test

Markup Language as a data format. Many of the approaches of

the ATS Open Systems approach were compatible with our

“guiding principles”. Virtual Instrument Software Architecture

(VISA) and Interchangeable Virtual Instruments (IVI)

technologies were determined to be too low-level for our goal

and available drivers appeared to be limited to the Windows

OS. In addition, these technologies did not appear to be widely

used outside the Automatic Test Equipment industry.

NASA’s Constellation program was also developing an

interface for avionics test orchestration, Software and

Avionics Test Orchestration Command and Messaging

(SATOCM). We did exchange observations with this group,

and although there remain differences in emphasis both teams

believed it would be possible to achieve convergence. This

interface was designed to simplify test script-writing using

Python, and its current incarnation was rejected by our study

because it violates many of our guiding principles.

C. Discovery Protocols

Universal Plug and Play (UPnP) was evaluated against

Zeroconf. Both were strong candidates, but we perceive the

framework provided by Zeroconf to be more applicable to our

technical challenge of discovery, and Zeroconf has existing

heritage in the test community through its use in LXI [1].

D. Messaging Protocols

Several message oriented protocols and middleware APIs at

several different levels of complexity were considered. Some,

like Java Message Service (JMS) were not language neutral.

Some like Advanced Message Queuing Protocol (AMQP)

introduced complexity by solving problems we did not have.

The Simple Object Access Protocol (SOAP) web services

protocol was chosen for initial prototyping because it satisfied

our evaluation criteria and fit well with ATML which was also

of interest. There is a wide variety of tools and

implementations available including many open-source

packages. It is also widely used and accepted in many

industries.

A functional prototype was implemented using SOAP. Many

parts of the SOAP implementation, however, were found to be

complex in the face of limited prototyping resources. For

example, Web Services Description Language (WSDL) files

were found to be complex to create and maintain. Different

implementations of SOAP were found to be incompatible

without detailed attention to configurations and options. No

insurmountable problems were encountered but eventually a

decision was made to prototype an alternative resource

oriented or Representational State Transfer (RESTful) [2], [3]

style of web services. The level of simplification, elegance and

increased ease of implementation was so striking that

ultimately when faced with building a prototype using limited

resources we opted for the RESTful approach. This choice

affected not just the messaging protocol but the overall

architecture and division of responsibilities between test

orchestration software and individual test set interfaces.

Many of RESTful features such as Uniform Interface,

stateless server restrictions, and cacheable responses

contributed to robustness and enhanced visibility of the test

protocol. Also, the perspective on commanding test

equipment changed from remote-procedure-call (RPC) based

to resource based which was found to result in gains in

elegance and simplicity.

E. Command Sets

Test execution interfaces have a long history of using verb-

based command sets, including HP BASIC, ATLAS, and

SCPI. NASA’s SATOCM command set was intended to

simplify script-writing, and initially we planned to implement

a subset of SATOCM commands.

The RESTful style architecture primarily uses a small subset

of standard HTTP commands such as GET, PUT, POST, and

DELETE directly. The richness of the interface is then

captured as resources that are manipulated using these

standard HTTP commands. This approach replaces the

requirement to create a traditional RPC-based set of

commands with the requirement to design appropriate

resources to represent required test concepts. In prototyping,

the resource-based approach was found to result in a simpler

and more transparent infrastructure.

The command and error message sets already provided by

HTTP understood by a large collection of off-the-shelf

software. The command set is compact and powerful, and the

error message set is rich. Security and data compression

solutions are innate.

F. Data Interface Protocols

We evaluated the architecture of having software modules

write directly to a designated database interface without an

intermediary. Scalability and robustness were identified

obstacles. To make a successful interface, a completed

software module must be able to create its own tables and

write data to them without further changes to the platform to

accommodate different database vendors or other changes in

database technology. JDBC was entertained as meeting this

objective, but limits the usability of the module by requiring

each software module to interface with Java. An ODBC

driver approach was evaluated but required specialized

software to be installed and maintained on each client. An

ODBCbridge driver approach eliminates the client software

issue, but introduces an issue with proprietary software and a

sole-source provider. It was determined that this type of SQL-

oriented middleware merely transfers the maintenance

problem to another vendor who must then be required.

The solution that worked best in prototyping and met the

goals of the study was to use the resource oriented interface to

serve data. An unexpected side benefit was that data resources

could be accessed by web-ready off-the-shelf software. For

example, prototypes built on modular open source software

have demonstrated that this interface is already natively

accessible to web browsers and to Excel.

 Data log requests are submitted by the orchestrator and each

test set module makes locally buffered data accessible through

a resource interface for that data log request. This approach

allows data to be logged with arbitrary resolution and

alignment occurs after the observations are aggregated.

G. Data Formats

Software written by hardware engineers often will write data

using comma separated value (CSV) or tab separated value

(TSV) formats. These formats are easy to generate, widely

supported by tools, and are decades old. There are, however,

many format variations including how commas are handled

within a data file. This can be particularly troublesome for

countries that use commas as the decimal separator. In

addition there are no recommendable approaches for

incorporating meta-data. There are also some operating

system differences.

Binary formats are very system-dependent, although they

can be supplemented with descriptive XML metadata files.

The SQL statement format was also considered, but the

availability of XML-enabled databases diminishes the appeal

of this option. It was further identified that different database

vendors have different interpretations of the SQL standard.

XML allows sufficient metadata to be included so that

database tables can be automatically created, standardizes the

date-time format, and allows further information like theory of

operation (help-text) for a parameter to be captured. ATML

[4] provides an XML language that standardizes information

exchange for many kinds of data and meta-data we are

interested in capturing, and is also becoming represented in

test industry products. An alternative schema, NASA

Exploration Information Ontology Model (NExIOM), was

discarded only because it has a limited following. The authors

hope that NASA can participate in the further development of

ATML.

IV. CONCLUSION

Combining RESTful principles with Zeroconf and ATML

formed a powerful, versatile, rugged interface that met all of

the study criteria. The combination was found to provide a

simple, elegant, and easy to use infrastructure for test

orchestration. Prototypes have already demonstrated

connectivity with LabVIEW, NASA’s Trick Simulation

Development Environment, and the Engineering DOUG

Graphics for Exploration (EDGE) software used for 3D

graphics rendering in Constellation training and test facilities.

Prototypes have been hosted in various distributions of the

Linux operating system and in Windows XP and Vista.

Distributed and co-hosted topologies have been demonstrated,

and multiple copies of modules are distinguishable. The

interface has been demonstrated with both simulations and

hardware and has been used to orchestrate a distributed Orion

abort-to-orbit test scenario using JSCs Avionics Integration

Enivironment (AIE) facility and the Reconfigurable Cockpit

Simulation Facility. It is being integrated with test hardware

in the Kedallion avionics facility and the Electronics Systems

Test Lab (ESTL) at Johnson Space Center. We currently rate

this interface as Technology Readiness Level 4.

ACKNOWLEDGMENT

This endeavor required focusing many kinds of

nonintersecting experts on a multi-faceted problem. We

would like to thank Thomas Brain, Tom Smith and Chris

Winton for their contributions to the software prototypes.

Joan Zucha and Adam Schlesinger were sources of guidance

and evaluation.

REFERENCES

[1] N. Barendt, LXI 1.2 Improves Discovery and Identification, LXI

ConneXion, February 2008, pp. 12-16.

[2] R. T. Fielding, Architectural Styles and the Design of Network-Based
Software Architectures, Doctoral dissertation (2000), University of

California, Irvine.

[3] L. Richardson, S. Ruby, Restful Web Services, O'Reilly Media, Inc.,
2007.

[4] http://grouper.ieee.org/groups/scc20/tii/

